Part Number Hot Search : 
HF3801D 74502 2N6485 2N5447 AX200659 00970 60100 0CTFP
Product Description
Full Text Search
 

To Download MAX2010 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-2930; Rev 0; 8/03
500MHz to 1100MHz Adjustable RF Predistorter
General Description
The MAX2010 adjustable RF predistorter is designed to improve power amplifier (PA) adjacent-channel power rejection (ACPR) by introducing gain and phase expansion in a PA chain to compensate for the PA's gain and phase compression. With its +23dBm maximum input power level and wide adjustable range, the MAX2010 can provide up to 12dB of ACPR improvement for power amplifiers operating in the 500MHz to 1100MHz frequency band. Higher frequencies of operation can be achieved with this IC's counterpart, the MAX2009. The MAX2010 is unique in that it provides up to 6dB of gain expansion and 21 of phase expansion as the input power is increased. The amount of expansion is configurable through two independent sets of control: one set adjusts the gain expansion breakpoint and slope, while the second set controls the same parameters for phase. With these settings in place, the linearization circuit can be run in either a static set-and-forget mode, or a more sophisticated closed-loop implementation can be employed with real-time software-controlled distortion correction. Hybrid correction modes are also possible using simple lookup tables to compensate for factors such as PA temperature drift or PA loading. The MAX2010 comes in a 28-pin thin QFN exposed pad (EP) package (5mm x 5mm) and is specified for the extended (-40C to +85C) temperature range. o o o o o o o o o o o o o
Features
Up to 12dB ACPR Improvement* Independent Gain and Phase Expansion Controls Gain Expansion Up to 6dB Phase Expansion Up to 21 500MHz to 1100MHz Frequency Range Exceptional Gain and Phase Flatness Group Delay <2.4ns (Gain and Phase Sections Combined) 0.03ns Group Delay Ripple Over a 100MHz Band Capable of Handling Input Drives Up to +23dBm On-Chip Temperature Variation Compensation Single +5V Supply Low Power Consumption: 75mW (typ) Fully Integrated into Small 28-Pin Thin QFN Package
MAX2010
*Performance dependent on amplifier, bias, and modulation.
Ordering Information
PART MAX2010ETI-T TEMP RANGE -40C to +85C PIN-PACKAGE 28 Thin QFN-EP*
*EP = Exposed paddle.
Applications
cdma2000TM, GSM/EDGE, and iDEN Base Stations
OUTG GND*
Functional Diagram/ Pin Configuration
GND* GND* 22 21 VCCG GAIN CONTROL 20 GND* 19 PBRAW 18 PBEXP 17 PBIN PHASE CONTROL 16 GND* 15 VCCP 8 GND* 9 INP 10 GND* 11 PFS1 12 PFS2 13 PDCS1 14 PDCS2 GCS GBP 23 GFS 24
Feed-Forward PA Architectures Digital Baseband Predistortion Architectures Military Applications
GND* GND* ING GND* GND* OUTP GND* 1 2 3 4 5 6 7
28
27
26
25
MAX2010
cdma2000 is a trademark of Telecommunications Industry Assoc.
*INTERNALLY CONNECTED TO EXPOSED GROUND PADDLE.
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
ABSOLUTE MAXIMUM RATINGS
VCCG, VCCP to GND ..............................................-0.3V to +5.5V ING, OUTG, GCS, GFS, GBP to GND......-0.3V to (VCCG + 0.3V) INP, OUTP, PFS_, PDCS_, PBRAW, PBEXP, PBIN to GND ............................-0.3V to (VCCP + 0.3V) Input (ING, INP, OUTP, OUTG) Level ............................+23dBm PBEXP Output Current ........................................................1mA Continuous Power Dissipation (TA = +70C) 28-Pin Thin QFN-EP (derate 21mW/C above +70C) ...............................1667mW Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering 10s) ..................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(MAX2010 EV kit; VCCG = VCCP = +4.75V to +5.25V; no RF signal applied; INP, ING, OUTP, OUTG are AC-coupled and terminated to 50. VPF_S1 = open; PBEXP shorted to PBRAW; VPDCS1 = VPDCS2 = 0.8V; VPBIN = VGBP = VGCS = GND; VGFS = VCCG; TA = -40C to +85C. Typical values are at VCCG = VCCP = +5.0V, TA = +25C, unless otherwise noted.)
PARAMETER Supply Voltage Supply Current Analog Input Voltage Range VCCG, VCCP VCCP VCCG PBIN, PBRAW GBP, GFS, GCS VGFS = VGCS = VPBRAW = 0V Analog Input Current Logic-Input High Voltage Logic-Input Low Voltage Logic Input Current VGBP = 0 to +5V VPBIN = 0 to +5V PDCS1, PDCS2 (Note 1) PDCS1, PDCS2 (Note 1) -2 0 0 -2 -100 -100 2.0 0.8 +2 CONDITIONS MIN 4.75 5.8 10 TYP MAX 5.25 7 12.1 VCCP VCCG +2 +170 +220 V V A A UNITS V mA V
2
_______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
AC ELECTRICAL CHARACTERISTICS
(MAX2010 EV kit, VCCG = VCCP = +4.75V to +5.25V, 50 environment, PIN = -20dBm, fIN = 500MHz to 1100MHz, VGCS = +1.0V, VGFS = +5.0V, VGBP = +1.2V, VPBIN = VPDCS1 = VPDCS2 = 0V, VPF_S1 = +5V, VPBRAW = VPBEXP, TA = -40C to +85C. Typical values are at fIN = 880MHz, VCCG = VCCP = +5V, TA = +25C, unless otherwise noted.) (Notes 1, 2)
PARAMETER Operating Frequency Range VSWR PHASE CONTROL SECTION Nominal Gain Gain Variation Over Temperature Gain Flatness Phase-Expansion Breakpoint Maximum Phase-Expansion Breakpoint Minimum Phase-Expansion Breakpoint Variation Over Temperature TA = -40C to +85C Over a 100MHz band VPBIN = +5V VPBIN = 0V TA = -40C to +85C VPF_S1 = +5V, VPDCS1 = VPDCS2 = 0V, PIN = -20 dBm to +23 dBm VPDCS1 = 5V, VPDCS2 = 0V, VPF_S1 = +1.5V Phase Expansion VPDCS1 = 0V, VPDCS2 = 5V, VPF_S1 = +1.5V VPF_S1 = 0V, VPDCS1 = VPDCS2 = +5V, PIN = -20dBm to +23dBm Phase-Expansion Slope Maximum Phase-Expansion Slope Minimum Phase-Slope Variation Over Temperature Phase Ripple Noise Figure Absolute Group Delay Group Delay Ripple Parasitic Gain Expansion Interconnects de-embedded Over a 100MHz band PIN = -20dBm to +23dBm PIN = +9dBm VPF_S1 = 0V, VPDCS1 = VPDCS2 = +5V, PIN = +9dBm PIN = +9dBm, TA = -40C to +85C Over a 100MHz band, deviation from linear phase 14 -5.5 -1.7 0.1 23 0.7 1.5 dB dB dB dBm dBm dB ING, INP, OUTG, OUTP CONDITIONS MIN 500 1.3:1 TYP MAX 1100 UNITS MHz
MAX2010
21
16 Degrees
6 Degrees /dB Degrees /dB Degrees /dB Degrees dB ns ns dB
1.4
0.6
0.05 0.02 5.5 1.3 0.01 +0.4
_______________________________________________________________________________________
3
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
AC ELECTRICAL CHARACTERISTICS (continued)
(MAX2010 EV kit, VCCG = VCCP = +4.75V to +5.25V, 50 environment, PIN = -20dBm, fIN = 500MHz to 1100MHz, VGCS = +1.0V, VGFS = +5.0V, VGBP = +1.2V, VPBIN = VPDCS1 = VPDCS2 = 0V, VPF_S1 = +5V, VPBRAW = VPBEXP, TA = -40C to +85C. Typical values are at fIN = 880MHz, VCCG = VCCP = +5V, TA = +25C, unless otherwise noted.) (Notes 1, 2)
PARAMETER GAIN CONTROL SECTION -14.9 Nominal Gain Gain Variation Over Temperature Gain Flatness Gain-Expansion Breakpoint Maximum Gain-Expansion Breakpoint Minimum Gain-Expansion Breakpoint Variation Over Temperature Gain-Expansion Gain-Expansion Slope Gain-Slope Variation Over Temperature Noise Figure Absolute Group Delay Group Delay Ripple Phase Ripple Parasitic Phase Expansion Interconnects de-embedded Over a 100MHz band Over a 100MHz band, deviation from linear phase PIN = -20dBm to +23dBm VGCS = 0V, VGFS = +5V VGCS = +5V, VGFS = 0V TA = -40C to +85C Over a 100MHz band VGBP = +5V VGBP = +0.5V TA = -40C to +85C VGFS = +5V, PIN = -20dBm to +23dBm VGFS = 0V, PIN = -20dBm to +23dBm VGFS = +5V, PIN = +15dBm VGFS = +0V, PIN = +15dBm PIN = +15dBm, TA = -40C to +85C -24.3 -7.6 -1.4 0.2 23 -2.5 -0.5 5.3 3.1 0.43 0.23 -0.01 14.9 1.12 0.02 0.09 +3 dB dB dBm dBm dB dB dB/dB dB/dB dB ns ns Degrees Degrees dB CONDITIONS MIN TYP MAX UNITS
Note 1: Guaranteed by design and characterization. Note 2: All limits reflect losses and characteristics of external components shown in the Typical Application Circuit, unless otherwise noted.
4
_______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Typical Operating Characteristics
Phase Control Section
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX2010 toc01
MAX2010
SMALL-SIGNAL INPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc02
SMALL-SIGNAL OUTPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc03
6.6 6.5 6.4 SUPPLY CURRENT (mA) 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 4.75 4.85 4.95 5.05 5.15 TA = -40C TA = +85C TA = +25C
0
0
OUTPUT RETURN LOSS (dB)
10 INPUT RETURN LOSS (dB)
10 B
20
C
20
30 D 40 B 50 A
30
A D C
40
50 0.5 0.9 1.0 0.8 FREQUENCY (GHz) A = VPDCS1 = VPDCS2 = VPF_S1 = 0V B = VPDCS1 = VPDCS2 = 0V, VPF_S1 = 5V C = VPDCS1 = VPDCS2 = 5V, VPF_S1 = 0V D = VPDCS1 = VPDCS2 = VPF_S1 = 5V 0.6 0.7 1.1 0.5 0.9 1.0 0.8 FREQUENCY (GHz) A = VPDCS1 = VPDCS2 = VPF_S1 = 0V B = VPDCS1 = VPDCS2 = 0V, VPF_S1 = 5V C = VPDCS1 = VPDCS2 = 5V, VPF_S1 = 0V D = VPDCS1 = VPDCS2 = VPF_S1 = 5V 0.6 0.7 1.1
5.25
SUPPLY VOLTAGE (V)
LARGE-SIGNAL INPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc04
LARGE-SIGNAL OUTPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc05
SMALL-SIGNAL GAIN vs. FREQUENCY
MAX2010 toc06
0
0
-4.0 -4.5 -5.0 GAIN (dB) TA = -40C TA = +25C TA = +85C
OUTPUT RETURN LOSS (dB)
10 INPUT RETURN LOSS (dB) B A 20
10
B
A
20 C
-5.5 -6.0
30 D 40 C 50 0.5 0.6 0.7 0.9 0.8 FREQUENCY (GHz) 1.0 1.1
30
D
40
-6.5 -7.0 0.5 0.6 0.7 0.9 0.8 FREQUENCY (GHz) 1.0 1.1 0.5 0.6 0.7 0.8 0.9 FREQUENCY (GHz) 1.0 1.1
50
PIN = +15dBm A = VPDCS1 = VPDCS2 = VPF_S1 = 0V B = VPDCS1 = VPDCS2 = 0V, VPF_S1 = 5V C = VPDCS1 = VPDCS2 = 5V, VPF_S1 = 0V D = VPDCS1 = VPDCS2 = VPF_S1 = 5V
PIN = +15dBm A = VPDCS1 = VPDCS2 = VPF_S1 = 0V B = VPDCS1 = VPDCS2 = 0V, VPF_S1 = 5V C = VPDCS1 = VPDCS2 = 5V, VPF_S1 = 0V D = VPDCS1 = VPDCS2 = VPF_S1 = 5V
_______________________________________________________________________________________
5
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
Typical Operating Characteristics (continued)
Phase Control Section (continued)
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
SMALL-SIGNAL GAIN vs. FREQUENCY
MAX2010 toc07
SMALL-SIGNAL GAIN vs. COARSE SLOPE
MAX2010 toc08
SMALL-SIGNAL GAIN vs. COARSE SLOPE
TA = -40C TA = +25C TA = +85C
MAX2010 toc09
-4.0 -4.5 -5.0 GAIN (dB) -5.5 -6.0 -6.5 -7.0 0.5 0.6 0.7 0.8 0.9 FREQUENCY (GHz) 1.0
-4.0 -4.5 -5.0 GAIN (dB) -5.5 VPF_S1 = 5V -6.0 -6.5 -7.0 PDCS1 = 0 PDCS2 = 0 VPF_S1 = 0V VPF_S1 = 1.5V
-4.0 -4.5 -5.0 GAIN (dB) -5.5 -6.0 -6.5 -7.0 PDCS1 = 0 PDCS2 = 0
VCCP = 4.75V, 5.0V, 5.25V
1.1
PDCS1 = 5 PDCS1 = 0 PDCS2 = 0 PDCS2 = 5 COARSE SLOPE (V)
PDCS1 = 5 PDCS2 = 5
PDCS1 = 5 PDCS1 = 0 PDCS2 = 0 PDCS2 = 5 COARSE SLOPE (V)
PDCS1 = 5 PDCS2 = 5
GROUP DELAY vs. FREQUENCY
MAX2010 toc10
NOISE FIGURE vs. FREQUENCY
6.8 6.6 NOISE FIGURE (dB) 6.4 6.2 6.0 5.8 5.6 5.4 D B
MAX2010 toc11
SUPPLY CURRENT vs. INPUT POWER
MAX2010 toc12
1.50 1.45 1.40 DELAY (ns) 1.35 A 1.30 1.25 1.20 0.5 0.6 0.7 0.8 D 0.9 B 1.0 C
7.0
6.00 5.95 SUPPLY CURRENT (mA) B 5.90 5.85 A 5.80 5.75 E D C
5.2 5.0 1.1 0.5
A 1.0 0.7 0.8 0.9 FREQUENCY (GHz) A = VPDCS1 = VPDCS2 = VPF_S1 = 0V B = VPDCS1 = VPDCS2 = 0V, VPF_S1 = 5V C = VPDCS1 = VPDCS2 = 5V, VPF_S1 = 0V D = VPDCS1 = VPDCS2 = VPF_S1 = 5V 0.6
C 1.1
5.70 0 4 8 12 16 20 24 INPUT POWER (dBm) D = VPBIN = 1.5V A = VPBIN = 0V E = VPBIN = 3.0V B = VPBIN = 0.5V C = VPBIN = 1.0V
FREQUENCY (GHz) A = VPDCS1 = VPDCS2 = VPF_S1 = 0V B = VPDCS1 = VPDCS2 = 0V, VPF_S1 = 5V C = VPDCS1 = VPDCS2 = 5V, VPF_S1 = 0V D = VPDCS1 = VPDCS2 = VPF_S1 = 5V INTERCONNECTS DE-EMBEDDED
6
_______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Typical Operating Characteristics (continued)
Phase Control Section (continued)
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
MAX2010
GAIN EXPANSION vs. INPUT POWER
D -4.7 -4.9 GAIN (dB) C -5.1 B -5.3 A -5.5 E F
MAX2010 toc13
PHASE EXPANSION vs. INPUT POWER
MAX2010 toc14
GAIN EXPANSION vs. INPUT POWER
MAX2010 toc15
-4.5
15 10 C PHASE (DEGREES) 5 B 0 A -5 -10 -15 D E F
-4.5 -4.7 -4.9 GAIN (dB) A -5.1 -5.3 D -5.5 -5.7 C
B
-5.7 -7 -2 3 8 13 18 23 INPUT POWER (dBm) D = VPBIN = 1.5V A = VPBIN = 0V E = VPBIN = 2.0V B = VPBIN = 0.5V C = VPBIN = 1.0V F = VPBIN = 2.5V
-20 -7 -2 3 8 13 18 23 INPUT POWER (dBm) D = VPBIN = 1.5V A = VPBIN = 0V E = VPBIN = 2.0V B = VPBIN = 0.5V C = VPBIN = 1.0V F = VPBIN = 2.5V
-7
-2
3
8
13
18
23
INPUT POWER (dBm) C = VPDCS1 = 0V, VPDCS2 = 5V A = VPDCS1 = VPDCS2 = 0V B = VPDCS1 = 5V, VPDCS2 = 0V D = VPDCS1 = VPDCS2 = 5V
GAIN EXPANSION vs. INPUT POWER
MAX2010 toc16
PHASE EXPANSION vs. INPUT POWER
MAX2010 toc17
PHASE EXPANSION vs. INPUT POWER
MAX2010 toc18
-4.5
15 10 F PHASE (DEGREES) 5 0 -5 -10 -15 B C -7 -2 3 8 13 18 A D E
15 10 PHASE (DEGREES) 5 0 A -5 D -10 C -15 -20 B
-4.8 GAIN (dB)
-5.1 D C B
E -5.4 F
A -5.7 -7 -2 3 8 13 18 23 INPUT POWER (dBm) E = VPF_S1 = 2.0V A = VPF_S1 = 0V B = VPF_S1 = 0.5V F = VPF_S1 = 5.0V C = VPF_S1 = 1.0V VPDCS1 = 5.0V D = VPF_S1 = 1.5V -20
23
-7
-2
3
8
13
18
23
INPUT POWER (dBm) D = VPF_S1 = 1.5V A = VPF_S1 = 0V B = VPF_S1 = 0.5V E = VPF_S1 = 2.0V C = VPF_S1 = 1.0V F = VPF_S1 = 5.0V VPDCS1 = 5.0V
INPUT POWER (dBm) A = VPDCS1 = VPDCS2 = 0V B = VPDCS1 = 5V, VPDCS2 = 0V C = VPDCS1 = 0V, VPDCS2 = 5V D = VPDCS1 = VPDCS2 = 5V
_______________________________________________________________________________________
7
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
Typical Operating Characteristics (continued)
Phase Control Section (continued)
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
GAIN EXPANSION vs. INPUT POWER
MAX2010 toc19
PHASE EXPANSION vs. INPUT POWER
VPDCS1 = 5.0, VPF_S1 = 1.5V
MAX2010 toc20
-4.0 -4.2 -4.4 -4.6 GAIN (dB) -4.8 -5.0 -5.2 -5.4 -5.6 -5.8 -7 -2 3 8 13 18 TA = +85C TA = +25C TA = -40C VPDCS1 = 5.0, VPF_S1 = 1.5V
0
-5 PHASE (DEGREES)
-10 TA = +25C -15 TA = +85C -20 TA = -40C
-25 23 -7 -2 3 8 13 18 23 INPUT POWER (dBm) INPUT POWER (dBm)
Typical Operating Characteristics
Gain Control Section
(MAX2010 EV kit, VCCG = +5.0V, PIN = -20dBm, VGBP = +1.2V, VGFS = +5.0V, VGCS = +1.0V, fIN = 880MHz, TA = +25C, unless otherwise noted.)
SMALL-SIGNAL INPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc22
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX2010 toc21
SMALL-SIGNAL OUTPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc23
6.6 6.5 6.4 SUPPLY CURRENT (mA) 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 4.75 4.85 4.95 5.05 5.15 TA = -40C TA = +85C TA = +25C
0
0
OUTPUT RETURN LOSS (dB)
INPUT RETURN LOSS (dB)
10 C, D 20 A, B
10
C, D
20
30
30
A, B
40
40
50 5.25 0.5 0.6 0.7 0.8 0.9 1.0 1.1 SUPPLY VOLTAGE (V) FREQUENCY (GHz) A = VGCS = 0V, VGFS = 0V C = VGCS = 5V, VGFS = 0V B = VGCS = 0V, VGFS = 5V D = VGCS = 5V, VGFS = 5V
50 0.5 0.6 0.7 0.8 0.9 1.0 1.1 FREQUENCY (GHz) A = VGCS = 0V, VGFS = 0V C = VGCS = 5V, VGFS = 0V B = VGCS = 0V, VGFS = 5V D = VGCS = 5V, VGFS = 5V
8
_______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Typical Operating Characteristics (continued)
Gain Control Section (continued)
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
LARGE-SIGNAL INPUT RETURN LOSS vs. FREQUENCY
MAX2010 toc24
MAX2010
LARGE-SIGNAL OUTPUT RETURN LOSS vs. FREQUENCY
PIN = +15dBm OUTPUT RETURN LOSS (dB) 10 D C GAIN (dB)
MAX2010 toc25
SMALL-SIGNAL GAIN vs. FREQUENCY
-13 -14 -15 -16 -17 -18 -19 TA = +85C TA = -40C TA = +25C
MAX2010 toc26
0 PIN = +15dBm INPUT RETURN LOSS (dB) 10 D 20 A C
0
-12
20 A 30 B 40
30
40
B
50 0.5 0.6 0.7 0.8 0.9 1.0 1.1 FREQUENCY (GHz) A = VGCS = 0V, VGFS = 0V C = VGCS = 5V, VGFS = 0V B = VGCS = 0V, VGFS = 5V D = VGCS = 5V, VGFS = 5V
50 0.5 0.6 0.7 0.8 0.9 1.0 1.1 FREQUENCY (GHz) A = VGCS = 0V, VGFS = 0V C = VGCS = 5V, VGFS = 0V B = VGCS = 0V, VGFS = 5V D = VGCS = 5V, VGFS = 5V
-20 0.5 0.6 0.7 0.8 0.9 1.0 1.1 FREQUENCY (GHz)
SMALL-SIGNAL GAIN vs. FREQUENCY
VCCG = 4.75V, 5.0V, 5.25V -13 -14 -10 GAIN (dB) GAIN (dB)
MAX2010 toc27
SMALL-SIGNAL GAIN vs. VGCS
MAX2010 toc28
SMALL-SIGNAL GAIN vs. VGCS
TA = -40C
MAX2010 toc29
-12
0 VGFS = 0V, 1.5V, 5.0V -5
0 -5 -10 GAIN (dB) -15 -20 -25 VGFS = +1.5V -30
-15 -16 -17 -18
-15 -20 -25
TA = +25C
TA = +85C
-19 -20 0.5 0.6 0.7 0.8 0.9 1.0 1.1 FREQUENCY (GHz) -30 0 1 2 VGCS (V) 3 4 5 0 1 2 VGCS (V) 3
4
5
_______________________________________________________________________________________
9
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
Typical Operating Characteristics (continued)
Gain Control Section (continued)
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
GROUP DELAY vs. FREQUENCY
MAX2010 toc30
NOISE FIGURE vs. FREQUENCY
MAX2010 toc31
SUPPLY CURRENT vs. INPUT POWER
MAX2010 toc32
1.5 1.4 1.3 DELAY (ns) 1.2 1.1 1.0 C, D
30 A 25 NOISE FIGURE (dB) B
30
25 SUPPLY CURRENT (mA) A C
B
20
20
A
15
C
15
E 10 D 5 0 12 16 20 24 8 INPUT POWER (dBm) A = VGBP = 0V D = VGBP = 1.5V B = VGBP = 0.5V E = VGBP = 3.0V C = VGBP = 1.0V 4
10 0.9 B 0.8 0.5 0.6 0.7 0.8 0.9 1.0 1.1 FREQUENCY (GHz) A = VGCS = 0V, VGFS = 0V C = VGCS = 5V, VGFS = 0V B = VGCS = 0V, VGFS = 5V D = VGCS = 5V, VGFS = 5V INTERCONNECTS DE-EMBEDDED 5 0.5 0.6
E D
1.1 0.7 0.8 0.9 1.0 FREQUENCY (GHz) D = VGCS = 5V, VGFS = 0V A = VGCS = 0V, VGFS = 0V E = VGCS = 5V, VGFS = 5V B = VGCS = 0V, VGFS = 5V C = VGCS = 1.5V, VGFS = 5V
GAIN EXPANSION vs. INPUT POWER
B -8 A D E C
MAX2010 toc33
PHASE EXPANSION vs. INPUT POWER
MAX2010 toc34
-5
-5
-7 A PHASE (DEGREES) -9
B
GAIN (dB)
-11
-14 GH
-11 F -13 H G E D
C
-17
F
-20 -7 8 13 18 23 3 INPUT POWER (dBm) A = VGBP = 0V E = VGBP = 2.0V B = VGBP = 0.5V F = VGBP = 2.5V C = VGBP = 1.0V G = VGBP = 3.5V D = VGBP = 1.5V H = VGBP = 5.0V -2
-15 -7 8 13 18 23 3 INPUT POWER (dBm) A = VGBP = 0V E = VGBP = 2.0V B = VGBP = 0.5V F = VGBP = 2.5V C = VGBP = 1.0V G = VGBP = 3.5V D = VGBP = 1.5V H = VGBP = 5.0V -2
10
______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Typical Operating Characteristics (continued)
Gain Control Section (continued)
(MAX2010 EV kit, VCCP = +5.0V, PIN = -20dBm, VPBIN = 0V, VPF_S1 = +5.0V, VPDCS1 = VPDCS2 = 0V, fIN = 880MHz, TA = +25C unless otherwise noted.)
GAIN EXPANSION vs. INPUT POWER
MAX2010 toc35
MAX2010
GAIN EXPANSION vs. INPUT POWER
MAX2010 toc36
PHASE EXPANSION vs. INPUT POWER
MAX2010 toc37
-5 E F GAIN (dB)
-5 -7 -9 -11 GAIN (dB) -13 -15 -17 -19 -21 -23
F
30
E
-8
20 PHASE (DEGREES) A, B 10 E 0 D -10 F -7 C
-11
D C A, B
-14 C -17
D A, B
-20 -7 8 13 18 23 3 INPUT POWER (dBm) A = VGFS = 0V D = VGFS = 1.5V B = VGFS = 0.5V E = VGFS = 2.0V C = VGFS = 1.0V F = VGFS = 5.0V -2
-25 -7 8 13 18 23 3 INPUT POWER (dBm) A = VGCS = 0V D = VGCS = 1.5V B = VGCS = 0.5V E = VGCS = 2.0V C = VGCS = 1.0V F = VGCS = 2.5V -2
-20 -2
8 13 18 23 3 INPUT POWER (dBm) A = VGCS = 0V D = VGCS = 1.5V B = VGCS = 0.5V E = VGCS = 2.0V C = VGCS = 1.0V F = VGCS = 5.0V
PHASE EXPANSION vs. INPUT POWER
-6 -7 PHASE (DEGREES) -8 GAIN (dB) -9 -10 -11 -12 -13 -14 -15 -7 8 13 18 23 3 INPUT POWER (dBm) A = VGFS = 0V D = VGFS = 1.5V B = VGFS = 0.5V E = VGFS = 2.0V C = VGFS = 1.0V F = VGFS = 5.0V -2 A, B C D F E
MAX2010 toc38
GAIN EXPANSION vs. INPUT POWER
MAX2010 toc39
PHASE EXPANSION vs. INPUT POWER
-6 -7 PHASE (DEGREES) -8 -9 -10 -11 -12 -13 -14 -15 TA = +85C TA = +25C TA = -40C
MAX2010 toc40
-5
-8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -7 -2 8 13 3 INPUT POWER (dBm) 18 TA = +85C TA = -40C TA = +25C
-5
23
-7
-2
8 13 3 INPUT POWER (dBm)
18
23
______________________________________________________________________________________
11
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
Pin Description
PIN 1, 2, 4, 5, 7, 8, 10, 16, 20, 22, 26, 28 3 6 9 11 12 13 14 15 17 18 19 21 23 24 25 27 EP NAME GND FUNCTION Ground. Internally connected to the exposed paddle. RF Gain Input. Connect ING to a coupling capacitor if it is not connected to OUTP. ING is interchangeable with OUTG. RF Phase Output. Connect OUTP to a coupling capacitor if it is not connected to INP. OUTP is interchangeable with INP. RF Phase Input. Connect INP to a coupling capacitor. This pin is interchangeable with OUTP. Fine Phase-Slope Control Input 1. See the Typical Application Circuit. Fine Phase-Slope Control Input 2. See the Typical Application Circuit. Digital Coarse Phase-Slope Control Range Input 1. Set to logical zero for the steepest slope. Digital Coarse Phase-Slope Control Range Input 2. Set to logical zero for the steepest slope. Phase-Control Supply Voltage. Bypass with a 0.01F capacitor to ground as close to the device as possible. Phase section can operate without VCCG. Phase Breakpoint Control Input Phase Expansion Output. Connect PBEXP to PBRAW to use PBIN as the breakpoint control voltage. Uncompensated Phase Breakpoint Input Gain-Control Supply Voltage. Bypass with a 0.01F capacitor to ground as close to the device as possible. Gain section can operate without VCCP. Gain Breakpoint Control Input Fine Gain-Slope Control Input Coarse Gain-Slope Control Input RF Gain Output. Connect OUTG to a coupling capacitor. OUTG is interchangeable with ING. Exposed Ground Paddle. Solder EP to the ground plane.
ING OUTP INP PFS1 PFS2 PDCS1 PDCS2 VCCP PBIN PBEXP PBRAW VCCG GBP GFS GCS OUTG GND
Detailed Description
The MAX2010 adjustable predistorter can provide up to 12dB of ACPR improvement for high-power amplifiers by introducing gain and phase expansion to compensate for the PA's gain and phase compression. The MAX2010 enables real-time software-controlled distortion correction, as well as set-and-forget tuning through the adjustment of the expansion starting point (breakpoint) and the rate of expansion (slope). The gain and
phase breakpoints can be set over a 20dB input power range. The phase expansion slope is variable from 0.3/dB to 2.0/dB and can be adjusted for a maximum of 21 of phase expansion. The gain expansion slope is variable from 0.1dB/dB to 0.53dB/dB and can be adjusted for a maximum of 6dB gain expansion. The following sections describe the tuning methodology best implemented with a class A amplifier. Other classes of operation may require significantly different settings.
12
______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Phase Expansion Circuitry
Figure 1 shows a typical PA's phase behavior with respect to input power. For input powers less than the breakpoint level, the phase remains relatively constant. As the input power becomes greater than the breakpoint level, the phase begins to compress and deteriorate the power amplifier's linearity. To compensate for this AM-PM distortion, the MAX2010 provides phase expansion, which occurs at the same breakpoint level but with the opposite slope. The overall result is a flat phase response. Phase Expansion Breakpoint The phase expansion breakpoint is typically controlled by a digital-to-analog converter (DAC) connected through the PBIN pin. The PBIN input voltage range of 0V to VCC corresponds to a breakpoint input power range of 0.7dBm to 23dBm. To achieve optimal performance, the phase expansion breakpoint of the MAX2010 must be set to equal the phase compression breakpoint of the PA. Phase Expansion Slope The phase expansion slope of the MAX2010 must also be adjusted to equal the opposite slope of the PA's phase compression curve. The phase expansion slope of the MAX2010 is controlled by the PFS1, PFS2, PDCS1, and PDCS2 pins. With pins PFS1 and PFS2 AC-coupled and connected to a variable capacitor or varactor diode, the PFS1 and PFS2 pins perform the task of fine tuning the phase expansion slope. Since off-chip varactor diodes are recommended for this function, they must be closely matched and identically biased. A minimum effective capacitance of 2pF to 6pF is required to achieve the full phase slope range as specified in the Electrical Characteristics tables. As shown in Figure 2, the varactors connected to PFS1 and PFS2 are in series with three internal capacitors on each pin. By connecting and disconnecting these internal capacitors, a larger change in phase expansion slope can be achieved through the logic levels presented at the PDCS1 and PDCS2 pins. The phase expansion slope is at its maximum when both VPDCS1 and V PDCS2 equal 0V. The phase tuning has a minimal effect on the small-signal gain.
MAX2010
Gain Expansion Circuitry
In addition to phase compression, the PA also suffers from gain compression (AM-AM) distortion, as shown in Figure 3. The PA gain curve remains flat for input powers below the breakpoint level, and begins to compress at a given rate (slope) for input powers greater than the breakpoint level. To compensate for such gain compression, the MAX2010 generates a gain expansion, which occurs at the same breakpoint level with the opposite slope. The overall result is a flat gain response at the PA output.
PA PHASE COMPRESSION
MAX2010 PHASE EXPANSION
IMPROVED PHASE DISTORTION
SLOPE
PIN (dBm)
PIN (dBm)
COMBINED PHASE (DEGREES)
MAX2010 PHASE (DEGREES)
BREAKPOINT
PA PHASE (DEGREES)
PIN (dBm)
Figure 1. PA Phase Compression Canceled by MAX2010 Phase Expansion
______________________________________________________________________________________
13
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
PFS1
PF_S1 PHASE-CONTROL CIRCUITRY PFS2
2
PDCS1 SWITCH CONTROL
PDCS2
MAX2010
Figure 2. Simplified Phase Slope Internal Circuitry
PA GAIN COMPRESSION
MAX2010 GAIN EXPANSION
IMPROVED GAIN DISTORTION
BREAKPOINT
SLOPE
PIN (dBm)
PIN (dBm)
COMBINED GAIN (dB)
MAX2010 GAIN (dB)
PA GAIN (dB)
PIN (dBm)
Figure 3. PA Gain Compression Canceled by MAX2010 Gain Expansion
14
______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Gain Expansion Breakpoint The gain expansion breakpoint is usually controlled by a DAC connected through the GBP pin. The GBP input voltage range of 0.5V to 5V corresponds to a breakpoint input power range of -2.5dBm to 23dBm. To achieve the optimal performance, the gain expansion breakpoint of the MAX2010 must be set to equal the gain compression point of the PA. The GBP control has a minimal effect on the small-signal gain when operated from 0.5V to 5V. Gain Expansion Slope In addition to properly setting the breakpoint, the gain expansion slope of the MAX2010 must also be adjusted to compensate for the PA's gain compression. The slope should be set using the following equation: MAX2010 _ SLOPE = -PA _ SLOPE 1 + PA _ SLOPE
Applications Information
The following section describes the tuning methodology best implemented with a class A amplifier. Other classes of operation may require significantly different settings.
MAX2010
Gain and Phase Expansion Optimization
The best approach to improve the ACPR of a PA is to first optimize the AM-PM response of the phase section. For most high-frequency LDMOS amplifiers, improving the AM-PM response provides the bulk of the ACPR improvement. Figure 4 shows a typical configuration of the phase tuning circuit. A power sweep on a network analyzer allows quick real-time tuning of the AM-PM response. First, tune PBIN to achieve the phase expansion starting point (breakpoint) at the same point where the PA's phase compression begins. Next, use control pins PF_S1, PDCS1, and PDCS2 to obtain the optimal AM-PM response. The typical values for these pins are shown in Figure 4. To further improve the ACPR, connect the phase output to the gain input through a preamplifier. The preamplifier is used to compensate for the high insertion loss of the gain section. Figure 5 shows a typical application circuit of the MAX2010 with the phase section cascaded to the gain section for further ACPR optimization. Similar to tuning the phase section, first tune the gain expansion breakpoint through the GBP pin and adjust for the desired gain expansion with pins GCS and GFS. To minimize the effect of GCS on the parasitic phase response, minimize the control voltage to around 1V. Some retuning of the AM-PM response may be necessary.
where: MAX2010_SLOPE = MAX2010 gain section's slope in dB/dB. PA_SLOPE = PA's gain slope in dB/dB, a negative number for compressive behavior. To modify the gain expansion slope, two adjustments must be made to the biases applied on pins GCS and GFS. Both GCS and GFS have an input voltage range of 0V to VCC, corresponding to a slope of approximately 0.1dB/dB to 0.53dB/dB. The slope is set to maximum when VGCS = 0V and VGFS = +5V, and the slope is at its minimum when VGCS = +5V and VGFS = 0V. Unlike the GBP pin, modifying the gain expansion slope bias on the GCS pin causes a change in the part's insertion loss and noise figure. For example, a smaller slope caused by GCS results in a better insertion loss and lower noise figure. The GFS does not affect the insertion loss. It can provide up to -30% or +30% total slope variation around the nominal slope set by GCS. Large amounts of GCS bias adjustment can also lead to an undesired (or residual) phase expansion/compression behavior. There exists an optimal bias voltage that minimizes this parasitic behavior (typically GCS = 1.0V). Control voltages higher than the optimal result in parasitic phase expansion, lower control voltages result in phase compression. GFS does not contribute to the phase behavior and is preferred for slope control.
Layout Considerations
A properly designed PC board is an essential part of any high-frequency circuit. In order to minimize external components, the PC board can be designed to incorporate small values of inductance and capacitance to optimize the input and output VSWR (refer to the MAX2009/ MAX2010 EV Kit). The phase section's PFS1 and PFS2 pins are sensitive to external parasitics. Minimize trace lengths and keep varactor diodes close to the pins. Remove the ground plane underneath the traces can further help reduce the parasitic capacitance. For best performance, route the ground pin traces directly to the grounded EP underneath the package. Solder the EP on the bottom of the device package evenly to the board ground plane to provide a heat transfer path along with signal grounding.
______________________________________________________________________________________
15
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
POWER AMPLIFIER
POUT = 7dBm 6 OUTP ING 3
MAX2010
PREAMPLIFIER 9 INP PIN = 14dBm OUTG 27
11 PFS1 VPF_S1 = 1.5V 12 PFS2 19 PBRAW 18 PBEXP PHASE CONTROL GAIN CONTROL
GBP 23
GFS 24
PBIN PDCS1 PDCS2 VPBIN = 0.8V VPDCS1 = 0V VPDCS2 = 5V 17 13 14
GCS 25
Figure 4. AM-PM Response Tuning Circuit
Power-Supply Bypassing
Bypass each VCC pin with a 0.01F capacitor.
Table 1. Suggested Components of Typical Application Circuit
DESIGNATION C1, C2, C3, C10 C4, C5 C6, C8 C11, C12 L1, L2 R1, R2 VR1, VR2 VALUE 100pF 5% 0.01F 10% 15pF 5% 2.2pF 0.1pF 5.6nH 0.3nH 1k 5% Skyworks SMV1232-079 TYPE 0402 ceramic capacitors 0603 ceramic capacitors 0402 ceramic capacitors 0402 ceramic capacitors 0402 ceramic inductors 0402 resistors Hyperabrupt varactor diodes
Exposed Pad RF
The exposed paddle (EP) of the MAX2010's 28-pin thin QFN-EP package provides a low inductance path to ground. It is important that the EP be soldered to the ground plane on the PC board, either directly or through an array of plated via holes.
16
______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
PREAMPLIFIER
GAIN = 7dB 6 OUTP 3 ING
MAX2010
PREAMPLIFIER 9 INP PIN = 14dBm OUTG 27
POWER AMPLIFIER
11 PFS1 VPF_S1 = 1.5V 12 PFS2 19 PBRAW 18 PBEXP PHASE CONTROL GAIN CONTROL
GBP 23
GFS 24
PBIN PDCS1 PDCS2 VPBIN = 0.8V VPDCS1 = 0V VPDCS2 = 5V 17 13 14
GCS 25 VGBP = 1V VGFS = 1.5V VGCS = 1V
Figure 5. MAX2010 Phase and Gain Optimization Circuit
______________________________________________________________________________________
17
500MHz to 1100MHz Adjustable RF Predistorter MAX2010
Typical Application Circuit
C6
OUTG
GND*
GND*
28 GND* OPTIONAL MATCH COMPENSATION C8 GND* ING GND* GND* C10 L2 OUTP GND* 1 2 3 4 5 6 7 8
27
26
25
24
23
GND* 22 21 VCCG GND* PBRAW PBEXP PBIN GND* VCCP C4 CONTROL UNIT C5
GCS
GAIN CONTROL
GBP
GFS
POWER AMPLIFER
20 19 18 17
MAX2010
PHASE CONTROL
16 15
PREAMPLIFER
C12
9 INP
10 GND*
11 PFS1
12 PFS2
13 PDCS1
14 PDCS2
C1
L1
GND*
C2
C3 R2
PREAMPLIFER
C11
*INTERNALLY CONNECTED TO EXPOSED GROUND PADDLE. VR1 VR2
R1
Chip Information
TRANSISTOR COUNT: Bipolar: 160 CMOS: 240 PROCESS: BiCMOS
18
______________________________________________________________________________________
500MHz to 1100MHz Adjustable RF Predistorter
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
0.15 C A
MAX2010
D2
C L
D
b D2/2
0.10 M C A B
PIN # 1 I.D.
D/2
0.15 C B
k
PIN # 1 I.D. 0.35x45
E/2 E2/2 E (NE-1) X e
C L
E2
k L
DETAIL A
e (ND-1) X e
C L
C L
L
L
e 0.10 C A 0.08 C
e
C
A1 A3
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE 16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm
APPROVAL DOCUMENT CONTROL NO. REV.
21-0140
C
1 2
COMMON DIMENSIONS
EXPOSED PAD VARIATIONS
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220. 10. WARPAGE SHALL NOT EXCEED 0.10 mm.
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE 16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm
APPROVAL DOCUMENT CONTROL NO. REV.
21-0140
C
2 2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19 (c) 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
QFN THIN.EPS


▲Up To Search▲   

 
Price & Availability of MAX2010

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X